PERCENT BEP FLOW RATE (December 2007 Column)
Where a pump operates on its "Head-Capacity" curve and how close the pump is to its best efficiency flow rate is both a pump selection and system issue, since a pump will always operate at the intersection between the pump H-Q and the system H-Q curves. Where the pump operates relative to the pump best efficiency flow rate has a large impact on pump reliability. Although, according to the field data, the best reliability is actually closer to 90%, then 100% of bep.
The reasons for the lower MTBF values at off bep flow rates are increasing pressure force variations around the impeller (higher radial bearing loads) at lower and higher flow rates; suction recirculation at lower flow rates, and more cavitation (higher NPSHR vs. lower NPSHA values) at higher flow rates. All of this can result in lower bearing, mechanical seal, wearing ring, and impeller life.
Typical reasons for pumps not operating near their bep flow rates are
- Including too much head and flow safety margin when selecting a pump.
- The actual system pressure drop is different than the initial calculated value.
- The system flow demand is different than the initial assumption.
- Changes to the system over time.
- Corrosion and wear of the pump and/or system.
Actual field testing (see Jan 2009 Column) is the best way to determine the true current system H-Q curve, which shows where the pump is actually operating relative to the pump bep flow rate. Once the actual system H-Q curve has been established, hardware changes to better match the pump and system can then be made, such as a new pump, new pump impeller (or impeller trim), or changes in the pump control method, such as the addition of a Variable Speed Drive.
NPSH MARGIN (January 2012 Column)
As discussed in last month's column, the amount of NPSH Margin provided to a pump, above the NPSHR (especially with High Suction Energy Pumps and/or pumps operating in the Suction Recirculation Region), can have a large impact on the reliability of the pump, as shown in figure 2. Typically you need a NPSH margin ratio of at least 4.0 (NPSHA/NPSHR), in the allowable operating range (above the start of suction recirculation), to eliminate all cavitation in a pump. This is why the maximum reliability, shown in figure 2, peaks at a NPSH margin of 4.0.