Filter underdrain nozzles, as well as the airwash header/lateral system, were covered in heavy polymer and were replaced before the new media was loaded. |
The manufacturer of the arsenic removal system and related equipment is Tonka Equipment Co. of Plymouth, MN. Before the polymer was discontinued, Tonka had conducted a 40-day pilot test of the arsenic water treatment, at no cost to the city, using reduced FeCl3 and no polymer addition. They then conducted a 30-day pilot test before installation of the new media, and also helped management find a solution to persistent FeCl3 suspension in the backwash tanks without resorting to re-introduction of polymer there - again at no cost to the city.
"When we started off in 2006, the engineers were shooting for arsenic below 3 ppb, so we had FeCl3 at 12.0 mg/L, and polymer at 1.2 mg/L," said Joe Faulkner, lead shift operator. "But we were getting breakthrough at the end of the filter runs, and the polymer was gumming up the filters. A filter run was supposed to be 8 hours, but it was cut to 4 hours with a head loss of 8 to 12 psi before backwashing."
The use of the polymer apparently was creating an iron/polymer sludge on top of the media, which the water could not penetrate. With much of the water following the path of least resistance, it would channel along the sides of the filter, rather than through the media as it should.
The plant used the polymer for about three years, at the rate of six to seven 250-gallon totes per year. Based on Tonka's piloting results, FeCl3 feeds were reduced and polymer addition was eliminated, thereby achieving significantly reduced costs, while still keeping the arsenic levels below the MCL of 10 ppb.
Not only was there no longer a need to purchase the polymer, but the need for the maintenance of the polymer injection equipment was eliminated, and a reduction of man-hours needed to operate that portion of the plant treatment processes was realized.
In addition, plant management noted additional costs associated with the problems potentially linked to the use of the polymers, such as short filter runs, the time to determine what the problems had been, and the eventual cost of replacing the media.
According to the operators, during the backwash cycles, when the water would channel, it would lift the media higher than it was designed for, causing a substantial loss of media. Approximately eight inches of media was lost from each filter per year.
"The polymer remaining in the filters turned into balls, like pieces of gum," Faulkner said. "We were still losing anthracite because of those mud balls. So we tried going down 4 or 5 in. into the anthracite to remove the mud balls, but we could not remove all of that residual polymer material."
"When the mud balls went through the air wash, they dropped to the gravel, and created a barrier where the water couldn't flow up. We were still doing all right with the compromised media, but were looking forward to replacing it, which we believed was the only way to completely solve the problem."
Media replacement was accomplished in two weeks, without any problems. Airwashes were replaced at the same time.