University of Utah chemist Lorraine Siperko (right) works on a water quality monitoring system while experiencing weightless conditions at the top of an arc-shaped flight path by a NASA C-9 research plane nicknamed the "vomit comet." Other scientists working on the project include Bob Lipert of Iowa State University (left) and John Straub of Wyle Laboratories.Keeping It Clean in OrbitThe project began a decade ago, before Porter joined the Utah faculty, when NASA sought proposals for disinfectant or "biocide" monitors to check the safety of drinking water on manned spacecraft.
"You can't sterilize water well enough to keep things from growing in it," Porter says. "Nature happens."
NASA uses iodine as a disinfectant on U.S. spacecraft. The Russians use colloidal silver -- pure silver nanoparticles, some of which go into solution.
The problem for both iodine and silver is that microbes grow in the water if levels are too low. If levels are too high, iodine-treated water tastes bad and eventually might cause thyroid problems, and silver at excessive levels can turn the skin grayish blue.
Space station water now is sampled and returned to Earth for testing at intervals of months because "they don't have an acceptable onboard technique," Porter says.
He says the space station is a proving ground for technologies for longer manned flights to the moon and Mars -- even though those flights are unlikely anytime soon due to high costs and other priorities.
Water for astronauts is carried into orbit and also produced on the space station as a byproduct of hydrogen and oxygen reacting in fuel cells. Disinfectants or biocides are added during flight, but actual levels in drinking water cannot be tested until samples are brought back to Earth. Porter says required biocide levels in drinking water are 0.1 to 1 part per million silver and 0.1 to 5 parts per million iodine.
How It Works
To test whether drinking water is adequately disinfected, space station astronauts will collect galley water in sealed plastic bags, and then use syringes to remove some water from the bags and push it through a cartridge that contains a half-inch-diameter, polymer, porous-membrane disk impregnated with a chemical to detect either iodine or silver. The disks, known as "solid phase extraction membranes," capture either iodine or silver, depending on the chemical in the disk.
Next, the bottom half of the cartridge, which contains the disk, is placed against a German company's handheld "diffuse reflectance spectrometer," which shines light on the disk so it can read the disk's color in about two seconds. Porter says the device was developed to measure the reflectivity or gloss, and thus the quality, of finishes such as automotive paint, industrial surfaces, stainless steel and decorative metals.
Each handheld device -- two are in the kit taken to the space station -- weighs 1.1 pounds, runs on four AA batteries, has a readout screen and measures 7 inches by 3.7 inches by 3.2 inches.
To test for iodine, the disk is impregnated with PVP (polyvinylpyrrolidone), a nontoxic chemical in contact lens cleaning solutions. The PVP reacts with iodine, and the intensity of the resulting yellow color reveals the concentration of iodine in the water.
To test for silver in water, the disk is imbued with DMABR, which is short for 5-(dimethylaminobenzylidene)rhodanine. A yellowish color indicates silver is absent, while flesh to brighter pink reveals how much silver is present.
"We can do this whole analysis in about two minutes on the ground or in space," Porter says.
Website: www.unews.utah.edu
###