Dial Indicators
There are two basic dial indicator methods. The Single Indicator Method uses a single dial indicator to take both the rim and face reading. You can then calculate shim changes for the motor feet to correctly align the unit. The Reverse Indicator Method uses a dial indicator on the pump shaft to read the motor shaft, and a dial indicator on the motor shaft to read the pump shaft. You can then use mathematical formulas to calculate shim changes to correctly align the unit. Although better then the "straight edge and feeler gauge method", the dial indicator method does have a few shortcomings, such as:
- Sagging indicator brackets
- Sticking/jumping dial hands
- Low resolution rounding losses
- Reading errors
- Play in mechanical linkages
- Tilted dial indicator (offset error)
Lasers-optic Devices
This state-of-the-art system emits a pulsating non-hazardous laser beam that automatically determines relative shaft positions and conveys this information to its microprocessor. The advantages of modern laser-optic alignment devices far outweigh the possible initial cost advantages of other, more conventional methods. Reliability-focused pump users employ this state-of-art laser optic alignment determination method, even though it is somewhat more complicated to set up, but it can be more accurate if properly used. The laser is especially helpful when aligning shafts that are separated by more than a few inches. The laser systems also have software that is capable of calculating the shim changes required. Once familiar with it, the laser operator can align a pump/motor combination fairly quickly and accurately. The primary drawback of the laser systems is cost, and in some cases their size.
Specific advantages of laser alignment tools are that: they do not require as much operator skill; center-to-center pump alignment can be achieved without paying attention to thermal growth, since it is possible to feed in the thermal growth data for compensation; and laser alignment can allow the operator to check the pump when it is running and up to temperature, this is not possible with dial indicators. Other advantages for the laser are:
- It is free of gravitational hardware sag
- It can work with the couplings in-place or uncoupled
- It is fast & easy to mount
- It can detect & measure the extent of a "soft foot"
- It feeds misalignment data to a microprocessor for horizontal and vertical corrections.
Alignment Tolerances
Acceptable alignment tolerances are a function of shaft speed, coupling type/geometry, and the distance between the driver and pump shaft ends. The question then becomes, just how close should the pump and driver shafts be aligned? How much vibration and efficiency loss will result from the misalignment of the shaft centers? It should be noted that high-quality flexible couplings are designed to tolerate more misalignment than is ideal for the machines involved. Bearing load increases with misalignment, and bearing life decreases as the cube of the load increase, therefore, a doubling of the load will shorten the bearing life by a factor of eight.