Example of grit removed using a vortex separator.
Click here to enlarge imageGrit removal chambers and technologies have evolved over the past several decades from the use of detritus tanks and constant velocity channels to the use of vortex chambers. Vortex systems use centrifugal and other rotational forces to assist gravitational forces in the separation of grit from organics and liquids. Consequently, a smaller footprint can be used to achieve equivalent or better treatment goals.
Vortex separators can be broadly classified as either mechanical vortex grit removal systems or induced vortex separators. The induced vortex separators rely to varying extents on a tangential intake to induce vortex motion, gravity and boundary layer effects to separate solids from liquids and unique geometric arrangements of internal flow modifying components.
Vortex chambers that rely solely on hydraulics without a need for power or mechanical equipment have the added advantage of further reducing operational and maintenance costs over the life of the system.
The different types of vortex grit removal devices offer targeted solutions for certain grit removal situations and duties and are typically characterized by a combination of headloss and grit capture efficacy.
High Headloss: Hydro cyclones are examples of high-headloss vortex separators. These separators rely on a tangential feed to generate high centrifugal forces and a free vortex type flow regime within a circular chamber that leads to effective solids liquid separation and classification. The TeaCup™ and SlurryCup™ from Hydro International are two examples. They use boundary layer effects to enhance classification, have no moving parts and can remove very fine grit in the sub 106 micron range. The irrecoverable head-losses across these types of vortex separators are significantly higher than the other two types of vortex separators, typically being in the 3- to 10-foot range, though for some cyclones, head losses can exceed 20 feet.
Medium Headloss: Medium-headloss vortex separators have irrecoverable losses in the 4 – 12 inch range and can maintain grit removal efficiency over a wide range of flow rates. These devices are typically used to remove grit particles with diameters in the 106 – 150 microns range. The Grit King® Separator is an example of such a device. The Grit King has no moving parts and uses a tangential feed to induce rotary motion within a circular chamber. The rotary flow patterns are stabilized by flow modifying members within the vessel to ensure long flow paths and virtually no short circuiting. This type of system is suited to upstream applications – ahead of fine screens, upstream of equalization basins, at satellite treatment sites within collection systems and upstream of drop structures into deep tunnels.