Click here to enlarge imageEnergy Effectiveness Of Hybrid Control
Now let us turn to the other benefit of this new hybrid control concept, and that is how it affects the efficiency of a pump system. The author likes to use what he calls, "Energy Effectiveness" to compare the efficiency of various pump system options. Energy effectiveness is defined as how many gallons per minute can be pumped through the system, for each kilowatt of input electrical energy to the driver. The equation used to calculate Energy Effectiveness is:
Energy Effectiveness (gpm/kW) = 5310 * EffPump * EffMotor * EffVFD / HeadPump
From this equation, we can see that, even though the net flow through the system will be lower with the by-pass open, by pushing the pump to higher flow rates (closer to the BEP), the pump, motor and VFD efficiencies will all increase, while the pump head is reduced. All of this results in greater Energy Effectiveness at reduced flow rates, see figure 3. As can be seen, the greatest energy savings starts at a flow rate of about 2,500 gpm (50% the maximum speed/BEP flow rate) and below. Even at flow rates above 2,500 gpm, the "50% Friction Head Reduction By-Pass Valve opening" setting results in a slightly greater Energy Effectiveness (over the complete flow range), then the By-Pass valve closed condition. In should be noted that this improvement in Energy Effectiveness is a function of pump specific speed. The higher the specific speed the greater will be the savings, since higher specific speed pumps have steeper head-capacity curves, and horsepower curves that are flat or can even decrease with increasing flow rates.
Other Issues
Finally, what is the down side of this new hybrid control concept? Obviously there is a capital cost for the added control components, and a slight (7% maximum) decrease in pump reliability due to the small increase in pump speed (see figure 4). This small reliability decrease is, however, more then off-set by the 60% increase in reliability from operation closer to the pump BEP. The increase in capital cost can be covered by the energy savings over time.
Conclusion
So we now have a new concept that the "Best-of-Class" pump users can adopt to increase both the efficiency and reliability (life cycle cost) of their pumps. It is especially effective with higher specific speed pumps that will operate in systems that have a relatively high static head component, and must operate at reduced flow rates for extended periods.
References
1. "How to Improve Reliability in Centrifugal Pump Systems Through the Automatic Tuneup of Pumps within Their Best Operational Condition", by Guilherme Martins & Enio Lima, April 2008, Proceedings of the 24th International Pump Users Symposium, Texas A&M Laboratories.
About the Author:
Allan R. Budris, P.E., is an independent consulting engineer who specializes in training, failure analysis, troubleshooting, reliability, efficiency audits and litigation support on pumps and pumping systems. With offices in Washington, NJ, he can be contacted via e-mail at [email protected].