A vigorous backwashing fully fluidizes the media bed, producing an aggressive scrubbing action.
Click here to enlarge imageMonitoring backwash expansion can help optimize filter performance. Optimal expansion produces two key process effects: It fully fluidizes media grains allowing impurities deep in the filter to release, and promotes aggressive particle agitation which is required to remove sticky floc and dislodge material attached to media grains.
The backwash cycle typically begins with a low, sub-fluidized flow rate that produces little or no expansion but prepares the bed for the shock of higher flows. The high flow rate that follows fluidizes and expands the media grains. The desired effect is to expand the media grains to a point that the bed is fully fluidized (particles deep in the filter are suspended) and the rate of particle collisions produces an aggressive scrubbing effect.
Failure to secure vigorous media scrubbing will diminish the overall wash effect and can contribute to harmful mud-ball formation and sand binding.
The rate of expansion is determined by the rate of flow after consideration is given to: (1) type of media, (2) size of media grains, (3) uniformity of media grain size, and (4) water temperature. The number of variables involved, frequency of change in water temperature and complexity of the required calculation can result in undesirable and unknown rates of expansion at even the most conscientious filtration plants. The true wash effect is often unknown, and it is difficult to achieve consistency in backwashes.
A healthy, well operated and properly maintained filter is not only conducive to producing high quality water but is also more likely to have longer filter run times and reduced annual backwash cycles. Since plants use their product (treated water) in backwashing, this calculates directly into significant annual savings. Plants typically report expending 2.5% to 3.0% of annual production in filter backwashing - a cost of more than 200 million gallons of production in a 20 mgd plant.