An HMO pressure filter is lowered into place in this large-scale radium removal project.
Click here to enlarge imageSystems employing co-precipitation through HMO require regular backwashing, resulting in backwash water with radium discharge. Compliant disposal of radioactive solids must be considered during system specification.
Radium Removal Through Ion Exchange
As with any contaminant removed through ion exchange, radium is adsorbed onto a resin bed. Once radium is removed from the resin through regeneration, it is concentrated in the brine. Liquid wastes from radium removal are allowed to be discharged to a sanitary sewer, provided the levels are less than federal, state and local limits. If the brine exceeds these levels, radium must be removed to compliant levels before the brine can be discharged to a sanitary sewer. This can be accomplished with the addition of an adsorption system to remove the radium from the brine, which may then be reused or discharged.
Radium Removal Through Adsorption
Radium can be removed from potable water through adsorption, and a NSF approved resin has been developed by Dow that can be used to treat brine or used directly on the raw water for radium removal. In a direct adsorption process, water passes through a resin bed where radium is adsorbed to resin. Since the radium is permanently adsorbed, no regeneration is required and there is no liquid waste discharge. Typically, several years pass before the media requires replacement, at which time spent resin is disposed as solid low level radioactive waste in accordance with all applicable regulations. Care must be taken for the monitoring of radium levels and the appropriate disposal of spent resin, as solid wastes must go to an approved low level radioactive waste disposal site.