Inaugurated by President Felipe Calderón Hinojosa, the pumping station is lifting the waste and storm water arriving through a huge tunnel some 30m below the surface and discharging into an open drainage channel. The pumping plant itself basically consists of one sump in which mechanical screens are installed and two sumps, each accommodating 12 KSB KRT Series pumps, inside a 20m diameter cylinder and around 35m deep. The pumping station is designed to handle a total flowrate of 40 cubic metres per second (m³/s).
A similar design concept has been applied to a second pump station, which is presently under construction. Called the Caracol pump station, it is being constructed in the federal zone of the Lake Texcoco and is projected to discharge 40m³/s combined sewage from the Emisor Oriente Tunnel to the Gran Canal open sewer channel. In total, 20 Series submersible pumps will lift the fluid more than 43m in height.
In the La Caldera plant each of the eight KSB Amarex KRT submersible motor pumps (four pumps per sump) have a flow of 1m³/s of municipal sewage, totaling the 8 m³/s which the system designers consider being the maximum dry weather flow. The remaining 16 pumps, each with a capacity of 2 m³/s, are designed to come into operation during storm water conditions, raising the total pump capacity up to a 40m³/s. In the Caracol pump station each of the 20 pumps is capable of pumping 2m³/s. The dry weather flow will be handled by four pumps per sump, with 12 pumps taking care of peak flows during rainy season.
When it came to the pump design, KSB's engineers faced a couple of challenges. The huge medium voltage motors had to develop up to 1600 hp — one of the highest nominal powers KSB had ever built - while still fitting into the general series design concept.
Moreover, the standard guide system for lowering and lifting the pumps in and out of the sump had to be adapted to site conditions. The solution devised was a device that allows automatic connection/disconnection of the lifting crane hook from the pump motor unit.
The biggest challenge though was to find a sump design that would allow the end user to operate the both plants in an efficient and reliable way. KSB was contracted to prepare a design that would fit the given dimensions and optimize this using computational fluid dynamic (CFD) simulations as well as a physical model test.
The overall aim was to reduce the energy of the incoming flow and to provide the pumps with favorable suction conditions. The flow had to approach to each pump with limited and equally distributed velocities and be free of pre-swirls. Surface as well as submerged vortices could not occur in any part of the sump and air entrainment had to be avoided by any means possible.
Furthermore, several specific wastewater issues had to be observed. These included flow velocities, which could not fall below a certain value in order to prevent sedimentation of the solid parts in the pumped medium; no dead zones were desired. All this had to be combined with the demand for separation between dry weather and storm weather pumps.