IFAS Aeration Zone
Converting a conventional wastewater treatment plant to IFAS technology requires the addition of a number of different treatment systems, including a new fine screening and caustic building, a new carbon building, lift station modifications, aeration capacity upgrades, and IFAS process tank modifications.
Screens, Pumps
All IFAS systems require adequate preliminary treatment design and operation. Primary clarification and fine screening prevents ragging and material build-up on the media in the aeration basin and clogging of the dispersed media and retaining screens/sieves.
Therefore, key in the upgrade is the construction of a new 5,000-square-foot screening and caustic building next to the existing screw pumps and blower building. The fine screening process removes particulates larger than 6 mm from the process flow while the caustic chemical feed facility doses caustic soda (50 percent sodium hydroxide) for maintaining adequate pH.
Sufficient oxygen must be available to satisfy the demand of the additional biomass to oxidize biological oxygen and ammonia. The blower building currently incorporates an existing 30-inch air header, not enough to supply oxygen for the increased treatment. The existing aeration capacity was also evaluated to determine whether it is adequate for the increased biological nitrogen removal and biomass respiration expected with the higher level of treatment performance associated with IFAS.
The upgrade will include the installation of a second 36-inch air header and nine turbo blowers. To accomplish this upgrade, the client and engineer of record worked together to procure turbo blowers, a relatively new technology, saving the agency significant costs by avoiding the need to build an expansion to the existing blower building, which would have been required using conventional blower technology.
Supplemental Carbon
The new chemical storage and pumping equipment will provide supplemental carbon from a new 2,000-square-foot building. Supplemental carbon is necessary for the biological nitrogen removal process.
The engineering team designed the adjacent chemical tank farm, a concrete structure that supports several large chemical storage tanks and provides containment walls in the event of a chemical spill. The facility design meets fire safety code for storage and handling methanol, though the owner may elect to use a manufactured carbon source that is not flammable.