By Chris Kloss and Nancy Stoner
Stormwater management in urban areas still bears many of the characteristics of an era when rivers and waterways were viewed as little more than receiving destinations of untreated waste waters. A large portion of the wastewater infrastructure that serves as the foundation of the municipal water management network predates modern water treatment practices. Since the mid-1900s when environmental controls began to be installed to limit the discharge of pollutants, municipalities have struggled to identify the most economically and environmentally effective methods of water treatment. Rehabilitating the nation’s aging and increasingly inadequate wastewater infrastructure system presents an economic challenge that will impact the water quality in urban watersheds and the condition of our built environment.
Stormwater presents both water quality treatment and, in combined sewer systems especially, infrastructure capacity challenges. Effectively managing runoff can be one of the most complex challenges facing urban municipalities. Traditionally, a wastewater approach has been employed to manage stormwater: large, centralized systems are used to collect and convey stormwater away from urban centers. Water quality treatment may be provided for a small portion of runoff (although urban stormwater is largely untreated), but stormwater volume reduction is not. The impervious surfaces and changes in land cover responsible for stormwater runoff go largely unaddressed and municipalities are faced with an increasing amount of stormwater to manage and mitigate.
Green infrastructure and low impact development (LID) practices are now being used in several cities to change how stormwater is managed and complement traditional gray infrastructure. LID techniques use or mimic nature, often capturing and treating rain where it falls, to reduce runoff. By using soil and vegetation as components of the infrastructure system, and allowing rain to infiltrate, evapotranspirate, or be otherwise retained, LID reduces the inflow of stormwater into sewer collection systems. Less water in the sewer system means less pollution discharged from combined sewer overflows (CSOs) or separate stormwater sewers and lower treatment costs at wastewater treatment plants. Cost savings have also been gained from either avoiding the addition of new infrastructure or diminishing the size and scope of capacity improvements.
Portland’s LID program uses a variety of approaches to reduce stormwater inflow into its combined sewer system. The city’s $8 million subsidized downspout disconnection program has saved $250 million in infrastructure improvements by diverting a billion gallons of rain annually from the combined sewer system and allowing the rain to soak into the ground. Innovative streetscape designs have also been used to introduce vegetation into sidewalks, traffic calming devices, and public rights-of-way to manage stormwater at the source. Testing of some of the demonstration projects has shown runoff reductions of more than 80%.